Approximation Hardness for Small Occurrence Instances of NP-Hard Problems
نویسندگان
چکیده
The paper contributes to the systematic study (started by Berman and Karpinski) of explicit approximability lower bounds for small occurrence optimization problems. We present parametrized reductions for some packing and covering problems, including 3-Dimensional Matching, and prove the best known inapproximability results even for highly restricted versions of them. For example, we show that it is NPhard to approximate Max-3-DM within 139 138 even on instances with exactly two occurrences of each element. Previous known hardness results for bounded occurence case of the problem required that the bound is at least three, and even then no explicit lower bound was known. New structural results which improve the known bounds for 3-regular amplifiers and hence the inapproximability results for numerous small occurrence problems studied earlier by Berman and Karpinski are also presented.
منابع مشابه
Nov 15 & 17 , 2011 ) : Hardness of Approximation , PCP theorem
So far we have been mostly talking about designing approximation algorithms and proving upper bounds. From no until the end of the course we will be talking about proving lower bounds (i.e. hardness of approximation). We are familiar with the theory of NP-completeness. When we prove that a problem is NP-hard it implies that, assuming P 6=NP there is no polynomail time algorithm that solves the ...
متن کاملApproximating Bounded Degree Instances of NP-Hard Problems
We present some of the recent results on computational complexity of approximating bounded degree combinatorial optimization problems. In particular, we present the best up to now known explicit nonapproximability bounds on the very small degree optimization problems which are of particular importance on the intermediate stages of proving approximation hardness of some other generic optimizatio...
متن کاملOn Approximability of Bounded Degree Instances of Selected Optimization Problems
In order to cope with the approximation hardness of an underlying optimization problem, it is advantageous to consider specific families of instances with properties that can be exploited to obtain efficient approximation algorithms for the restricted version of the problem with improved performance guarantees. In this thesis, we investigate the approximation complexity of selected NP-hard opti...
متن کاملOn the Worst-Case Approximability of Sparse PCA
It is well known that Sparse PCA (Sparse Principal Component Analysis) is NP-hard to solve exactly on worst-case instances. What is the complexity of solving Sparse PCA approximately? Our contributions include: 1. a simple and efficient algorithm that achieves an n-approximation; 2. NP-hardness of approximation to within (1 − ε), for some small constant ε > 0; 3. SSE-hardness of approximation t...
متن کاملOn the Approximability of Sparse PCA
It is well known that Sparse PCA (Sparse Principal Component Analysis) is NP-hard to solve exactly on worst-case instances. What is the complexity of solving Sparse PCA approximately? Our contributions include: 1. a simple and efficient algorithm that achieves an n−1/3-approximation; 2. NP-hardness of approximation to within (1− ε), for some small constant ε > 0; 3. SSE-hardness of approximatio...
متن کامل